Site-Specific Quality Assurance Project Plan

Kinneytown Dam, Seymour, Connecticut Phase II – Environmental Site Assessment

August 2023

Prepared for: Environmental Protection Agency Targeted Brownfields Assessment Program EPA New England, Region 1 5 Post Office Square - Suite 100 Boston, MA 02109-3912

Naugatuck Valley Council of Governments and Connecticut Brownfield Land Bank 49 Leavenworth Street, Waterbury CT, 06702

Contents

1.0	Title and Approval Page1
2.0	Project Organization & Personnel Responsibilities2
3.0	Problem Definition & Project Quality Objectives
3.1	Problem Definition
3.2	Subject Property Description
3.3	Contaminants of Concern
3.4	Tasks to be Performed
3.5	Hazardous Building Materials Inspections7
3.6	Sampling Locations and Rationale
3.7	Sampling Media and Parameters
3.8	Regulatory Standards
3.9	Decision Statement
4.0	Project Timeline
5.0	Sampling and Analytical Requirements
5.1	Sample Collection12
5.2	Sample Analysis15
6.0	Project Specific SOP References16
7.0	Field Equipment Calibration & Corrective Action17
8.0	Laboratory Equipment Calibration & Corrective Action17
9.0	Sampling Handling and Custody Requirements17
10.0	Field and Analytical Laboratory Quality Control Summary17
11.0	Data Management & Project Reports
12.0	Assessment and Oversight
13.0	Data Review
14.0	References

List of Tables

Table 1: Personnel responsibilities	
Table 2: Potential Contaminants of Concern	5
Table 3: Hazardous Building Materials Criteria	
Table 4: Sediment Categories of Screening Values	
Table 5: Project Timeline	12
Table 6: Sample Summary	12
Table 7: Analytical Summary	16
Table 8: Alpha Analytical Laboratory SOP References	16
Table 9: Project Specific SOP References	17
Table 10: Field Quality Control Samples	

List of Figures

Figure 1: Site Location Figure 2: Topographic Map Figure 3: Site Layout Figure 4: Proposed Sampling Locations

Appendices

Appendix A: Analyte Lists

Acronyms and Abbreviations

ACM	asbestos containing materials
AHERA	Asbestos Hazard Emergency Response Act
BTAG	Biological Technical Assistance Group
C&D	construction and demolition
CoC	contaminant of concern
CT DEEP	Connecticut Department of Energy and Environmental Protection
CT-RCS	CT Residential Direct Exposure Criteria for soil
EPA	United States Environmental Protection Agency
ESA	environmental site assessment
ESV	ecological screening values
ETPH	extractable total petroleum hydrocarbons
ft. bgs	feet below ground surface
FPEC	freshwater probable effect concentration
FTEC	freshwater threshold effect concentration
LBP	lead-based paint
GPR	ground penetrating radar
NESHAP	National Emission Standards for Hazardous Air Pollutants
NOAA	National Oceanic and Atmospheric Administration
NVCOG	Naugatuck Valley Council of Government
NYSDEC	New York State Department of Environmental Conservation
PCB	polychlorinated biphenyl
PID	photoionization detector
PFAS	per- and polyfluoroalkyl substances
QA	quality assurance
QAPP	Quality Assurance Project Plan
RSV	refinement screening values
SOP	standard operating procedure
SQG	sediment quality guideline
SQuiRTs	screening quick reference tables
SSQAPP	Site-Specific Quality Assurance Project Plan
SVOC	semivolatile organic compound
ТВА	targeted brownfields assessment
TSCA	Toxic Substances Control Act
U.S. DOT	United States Department of Transportation
VOC	volatile organic compound
Volpe	U.S. DOT Volpe National Transportation Systems Center

I.0 Title and Approval Page

Project Name: Kinneytown Dam, Seymour, CT Phase II ESA

Project Location: 677 South Main Street, Seymour, CT, Parcel ID: 11-03-35-0; 769 Derby Avenue, Seymour, CT, Parcel ID: 12-04-24; 0 Hotchkiss Terrace, Ansonia, CT, Parcel ID: 036-0001-0003

Document Title: Site-Specific Quality Assurance Project Plan

Lead Organization: Untied States Environmental Protection Agency Region 1

Interagency Agreement Number: VXBS

Preparer: U.S. DOT Volpe National Transportation Systems Center

Preparer address and contact info: 55 Broadway, Cambridge, MA 02142, 617-494-3974

Date: 6/9/23 Rev: 1.0

This Site-Specific Quality Assurance Project Plan (SSQAPP) supplements the U.S. DOT Volpe Brownfields Generic Quality Assurance Project Plan (# 23063).

Volpe Program Manager: Michelle Heimgartner, Senior Environmental Engineer

Volpe QA Officer: Chadd Fry, General Engineer

EPA QA Reviewer: Emily Ambeliotis

EPA Brownfields Program Officer: James Byrne

2.0 Project Organization & Personnel Responsibilities

In support of the United States Environmental Protection Agency (EPA) Region 1 Targeted Brownfields Assessment (TBA) Program, the United States Department of Transportation Volpe National Transportation Systems Center (Volpe) will perform a Phase II environmental site assessment (ESA). The Volpe Project Team will consist of the Volpe Program Manager and Project Implementer with the assistance of the Volpe Quality Assurance (QA) Officer. The project team may be supplemented with support of additional Volpe scientists and engineers as needed. Personnel responsibilities for this project are included in Table 1 and will be organized as depicted in the graphic below. Project roles and organization are subject to change.

Table 1: Personnel responsibilities

Role	Name	Title	Phone
EPA Project Officer	James Byrne	Brownfield Program Officer	617-918-1389
EPA QA Officer	Emily Ambeliotis	EPA QA Officer	617-918-8348
Grantee Contact	Ricardo Rodriquez	NVCOG Brownfield Project	202-982-0797
		Manager	
Volpe Program Manager	Michelle Heimgartner	Senior Environmental Engineer	617-494-2098
Volpe Project Implementer	Evan Starr	Environmental Protection Specialist	617-494-3974
Volpe QA Officer	Chadd Fry	General Engineer	609-330-8361
Laboratory Contact	Alpha Analytical	Analytical Laboratory	800-624-9220
Drilling Contact	New England Boring	Steven Garside	603-437-1610
0	Co.		

3.0 Problem Definition & Project Quality Objectives

3.1 Problem Definition

A Phase I ESA was completed in April 2023 by Volpe for the property known as the Kinneytown Dam (Subject Property), which is planned for demolition and restoration. The assessment included review of historical and environmental records associated with the Subject Property and the surrounding area, a Site reconnaissance visit, and interviews with the Subject Property manager and local officials. The Phase I assessment identified a recognized environmental condition (REC) in connection with the Subject Property from potential sediment contamination resulting from suspected historic releases of hazardous materials and/or petroleum products from upstream sources.

The purpose of the Phase II ESA is to evaluate the presence or absence of hazardous materials and petroleum products in sediment north of the dam structure and within Coe Pond, and to assess upstream and downstream background conditions. Identifying the presence or absence of these contaminants from within the vertical extent of sediment down to bedrock within the dam impoundments will help support the dam structure demolition plan and determine the feasibility of managing existing sediment build-up within the Naugatuck River. Additional environmental investigations will include the assessment of buildings or structures that potentially contain hazardous building materials.

Surface water and sediment sampling will be conducted to identify the presence or absence of a wide suite of potential contaminants of concern (COCs) identified in the Phase I ESA and in consultation with CT DEEP and EPA, which includes metals, mercury, herbicides, pesticides, polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), extractable total petroleum hydrocarbons (ETPH), and per- and polyfluoroalkyl substances (PFAS) as specified in Table 2. Potential hazardous building materials will be inspected, sampled, and analyzed for asbestos-containing materials (ACM), lead-based paint (LBP), and PCB-containing materials.

3.2 Subject Property Description

The Subject Property is an approximately 171-acre area located between Seymour, CT and Ansonia, CT, in New Haven County, Connecticut. The Subject Property is comprised of three parcels:

- 677 South Main Street, Seymour CT, map-block-lot (MBL): 11-03-35-0, approximately 18 acres
- 769 Derby Avenue, Seymour, CT, MBL: 12-04-34-0, approximately 99 acres
- 0 Hotchkiss Terrace, Ansonia, CT, MBL: 036 0001 0003, approximately 54 acres

New Haven County is situated in southwestern Connecticut. The Subject Property topography is variable but generally slopes from higher elevations in the north to lower elevations in the south. The Naugatuck River flows north to south and runs from approximately 50 ft. above mean sea level at the main impoundment to approximately 15 ft. above mean sea level south of the main impoundment. The river flows south from Seymour, CT, to Ansonia, CT. The main dam structure is located at the following coordinates: 41.368619, -73.085845. The lower dam structure is located at: 41.353742, -73.085387 as shown on Figure 3.

The Kinneytown Dam is 28 feet high and 455 feet wide, with an estimated impoundment area of 72 acres at Unit 1. A second dam, the Canal Reservoir Dam, is 30 feet high and 60 feet wide, with an estimated impoundment area of 37 acres. The facility was designed to produce electricity via turbines in two powerhouses. The Seymour powerhouse (powerhouse 1) is adjacent to the larger upper dam. The Ansonia powerhouse (powerhouse 2) is located approximately one mile south. A canal and reservoir (known today as Coe Pond) delivered water from powerhouse 1 to powerhouse 2. Figure 1 details general location of the subject property and Figure 2 details the subject property layout.

The Subject Property consists of several areas:

- The Kinneytown Hydroelectric Dam powerhouse 1, located in Seymour, CT, has not produced power since 2020. It consists of an impoundment, spillway, sluicegate, large filtering grates, fish passage ladder, gatehouse (located on the opposite bank of the river across the impoundment), buried penstock, floating boat barrier, and the powerhouse which contains a turbine, transformer, and associated equipment.
- The Kinneytown Hydroelectric Dam powerhouse 2, which is sometimes referred to as the "old powerhouse" is located in Ansonia, CT and has not produced power since 2013. Powerhouse 2 consists of a catwalk, impoundment, spillway, and powerhouse which contains a turbine, transformer, and associated equipment. This building is in a state of disrepair.
- A manmade canal runs between the two dams to deliver water from powerhouse 1 to powerhouse 2. The gatehouse at dam 1 controls inflow (north to south) rate. There is a reservoir located along this canal to retain excess water. This reservoir is known today as Coe Pond. From Coe Pond, the canal continues south to powerhouse 2.
- Coe Pond, a manmade reservoir formed by the canal between dam 1 and 2.

A full Subject Property description with detailed information on history, uses, ownership, and features is provided in *Phase I – Environmental Site Assessment, Kinneytown Dam, Seymour, Connecticut* (Volpe, 2023b). A summary of that description is provided in this section. Please see the Phase I ESA report for additional details, figures, and records. Figures showing the Subject Property location, topography of the surrounding area, and the Subject Property layout are included as Figures 1, 2, and 3, respectively.

Site History

The Kinneytown Dam was constructed in 1845 as a diversion dam for a downstream mill and later converted into a hydroelectric dam (unit 1) with a canal that leads to unit 2 and the canal dam downstream. Floods have twice destroyed the dam, once in 1910 and again in 1955, and it was twice rebuilt. It is currently in need of repair according to a Federal Energy Regulatory Commission (FERC) communication from 2022 and is rated as a significant hazard by CTDEEP since 2016, with an inoperable fish ladder. The dams have not been used to generate electricity for any purpose since Fall 2020. The Subject Property has remained in that condition to the present day.

Current Ownership and Use

The Subject Property is currently owned by Trimaran Energy, LLC. and is not in use. All structures listed

above are either abandoned or otherwise not in use. The fish ladder passage channel at Unit 1 is in place but is ineffective and not in use.

Metro-North Commuter Railroad, a subsidiary of MTA, holds a leasing agreement from 1984 with Arco Metals Company for wire, pipe, and cable crossings associated with the rail line adjacent to the Dam property.

Proposed Development

The dam is slated to be removed and the surrounding river restored.

3.3 Contaminants of Concern

Based on review of historical information and interviews, as well as previous limited sampling performed in the upper dam impoundment, the Phase I ESA identified potential contaminants of concern to be evaluated in sediment located in the upper and lower impoundments. This Phase II ESA will expand the focus to include a full suite of analytical methods to properly evaluate the feasibility of different sediment plans related to the future removal of the Kinneytown Dam.

Limited sediment sampling was performed in two locations within the upper dam impoundment in December 2022 and included the collection of five samples analyzed for herbicides, pesticides, polyaromatic hydrocarbons (PAHs), PCBs, SVOCs, VOCs, and metals. Laboratory analysis identified several detections exceeding National Oceanic and Atmospheric Administration (NOAA) Freshwater Sediment Screening Quick Reference Tables (SQuiRTs) and USEPA Region 3 screening benchmarks for freshwater sediment including PAHs, PCBs, SVOCs, and VOCs.

The primary rationale for broad sampling and analysis includes historical flooding that occurred within the Naugatuck Valley in 1910 and 1955, which destroyed industrial buildings upstream and may have contributed to pollutant deposition within the dam impoundments. Proposed sampling under this Phase II ESA will follow previous sampling efforts and expand methodologies to evaluate samples from within the entire impoundment area and to explore emerging contaminants, water quality, and characterize sediment. Additionally, the three building structures at the Subject Property will be inspected for hazardous building materials. A list of potential CoCs is provided in Table 2.

Contaminant	Media	Location	Rationale		
Metals	Sediment	Upper/Lower	Unknown historical deposition from upstream sources.		
		Impoundments	Detections were identified in December 2022 sampling.		
Volatile Organic	Sediment	Upper/Lower	Unknown historical deposition from upstream sources.		
Compounds (VOCs)		Impoundments	Detections were identified in December 2022 sampling.		
Semivolatile	Sediment	Upper/Lower	Unknown historical deposition from upstream sources.		
Organic Compounds		Impoundments	Detections were identified in December 2022 sampling.		
(SVOCs)					
Petroleum	Sediment	Upper/Lower	Unknown historical pollutant deposition from potential		
		Impoundments	regional dumping or leaking of petroleum products.		
Polychlorinated	Sediment	Upper/Lower	Unknown historical deposition from upstream sources.		
biphenyls (PCBs)		Impoundments	Detections were identified in December 2022 sampling.		

Table 2: Potential Contaminants of Concern

Pesticides and Herbicides	Sediment	Upper/Lower	Unknown historical deposition from upstream sources.
PFAS	Sediment	Upper/Lower Impoundments	Evaluate potential presence of emerging contaminants.
Total Organic Carbon, grain size distribution, organic content, moisture content, percent solids, pH.	Sediment	Upper/Lower Impoundments	Perform physical characterization of sediment.
Asbestos-containing materials (ACM)	Building materials	Suspect building structures	Conduct hazardous building materials inspection, including sampling, to identify presence or absence of ACM as part of demolition planning.
Lead-Based Paint (LBP)	Building materials	Suspect building structures	Conduct hazardous building materials inspection, including sampling, to identify presence or absence of LBP as part of demolition planning.
PCB-containing materials	Building materials	Suspect building structures	Conduct hazardous building materials inspection, including sampling, to identify presence or absence of PCB-containing materials as part of demolition planning.

3.4 Tasks to be Performed

The Phase II ESA investigation will be comprised of the following tasks, which shall be conducted in accordance with the *Volpe Brownfields Generic QAPP* (Volpe, 2023a) and applicable Volpe Standard Operating Procedures (SOPs). A schedule for these tasks is provided in Section 4.

- Field documentation will include a list of each sample ID, date, time and depth of collection, weather conditions, any evidence of odors or soil staining, and general physical characteristics. Sediment sample locations will be measured between each other and located with a hand-held GPS. Additionally, photographs will document each sediment core interval and sample location.
- Hazardous Building Materials Inspections A CT-certified asbestos building inspector will perform a sampling survey of hazardous building materials at three Subject Property structures: Unit 1 powerhouse, Unit 1 canal gatehouse, and Unit 2 powerhouse. Building inspections will be performed in accordance with Volpe SOP-024 Hazardous Building Materials Survey. See Section 3.5 for additional information.
- Equipment Mobilization A drilling contractor will utilize a crane to lift and place a barge with drilling equipment into impoundment 1, from the location of the Unit 1 Powerhouse parking lot. Following completion of sediment sampling from within impoundment 1, the drilling barge will be relocated to Coe Pond for sediment sampling. Additional upstream and downstream background sample locations will need to be identified and coordinated through project sponsors please see section 3.6 for additional details.
- Sediment Boring Advancement A drilling contractor shall advance a minimum of thirty sediment borings in accordance with EPA *Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual* (2001). Borings shall be advanced to bedrock or refusal (anticipated depth of 15-20 feet below sediment surface). Surface water is

anticipated to be less than 10 ft. deep, and likely shallow throughout most of the impoundments. Borings shall be located as described in Section 3.5.

- Sediment Sample Collection Sediment samples shall be collected from each of the completed sediment borings, excluding shallow refusals, for the parameters described in Section 3.6. Refusal from the anticipated historic flood layer of 2-4 ft. below surface bed is considered shallow refusal. A table of proposed sediment samples is included in Section 5. Samples shall be screened and collected in accordance with EPA *Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual* (2001), Volpe SOP-003 Description and Identification of Soils, SOP-004 Soil Headspace Screening, SOP-008 Split-Spoon/Spilt-Barrel Sampling, Volpe SOP-018 Field Sampling Equipment Decontamination, and SOP-005 Surficial Soil Sediment and Sludge Sampling.
- Surface Water Sampling Surface water will be analyzed for physical characteristics including depth to sediment, turbidity, dissolved oxygen, specific conductance, temperature, pH, and oxidation/reduction potential. Surface water will be collected in accordance with Volpe SOP-016 Surface Water Sampling.
- Sediment Sample Analysis Sediment samples shall be handled in accordance with Volpe SOP-019 Sample Labeling, Packaging, and Shipping. Samples will be sent to Alpha Analytical for laboratory analysis.
- Equipment Demobilization Following sample collection, equipment shall be appropriately removed from the Subject Property. Waste shall be handled in accordance with Volpe SOP-020 Management of Investigation Derived Waste.
- Data QA and Analysis Volpe will request a Level II data package for all sample data. Data received from the laboratory shall undergo the QA/QC process as described in the *Volpe Brownfields Generic QAPP* and will be reviewed by the Volpe QA Manager. Laboratory analytical results shall be compared to the regulatory standards discussed in Section 3.8 and used to inform the decision statement provided in Section 3.9. Additionally, sediment data with low percent solids will be qualified as detailed in Section 5.2.
- Reporting The sampling investigation activities, findings, recommendations shall be summarized in a Phase II ESA Report, that will include relevant data tables, figures, and analytical reports. The report will be submitted to the EPA Project Officer and shared with the grantee to inform future steps for the Subject Property. Data reporting is further discussed in Section 11.

3.5 Hazardous Building Materials Inspections

All structures at the subject property, including the Unit 1 Powerhouse, canal gatehouse, and Unit 2 powerhouse, will be inspected, sampled, and evaluated for the absence or presence of hazardous building materials. This can include but is not limited to asbestos-containing materials, lead-based paints, and PCB-containing materials. See Table 3 for regulatory criteria to be followed. All asbestos inspections will be conducted in accordance with Volpe SOP-024 and The Asbestos Hazard Emergency Response Act (AHERA). Sampling collection procedures are detailed in the SOP.

3.6 Sampling Locations and Rationale

Sediment sampling will be collected from a minimum of twenty (20) sample locations from within the upper dam impoundment area, with three (3) additional sample locations collected upstream and north of the impoundment area as background samples. Sample locations are shown in Figure 4 but are subject to change, with the approval of the Volpe Project Implementer, based on site conditions. Table 6 includes a table of proposed sample locations. The background sample location will be identified following coordination and access considerations with project personnel, EPA, and NVCOG.

An additional ten (10) sample locations will be collected from within Coe Pond and the lower dam impoundment area, as shown on Figure 4, with three (3) additional background samples collected from a downstream location following access considerations.

Utilizing a barge-mounted mechanical drill, each sample location will consist of deploying a sediment core sampler down to bedrock and/or refusal. Anticipated depths of sediment cores will vary across the impoundment areas due to changes in river topography and sediment build-up. Sediment thickness may vary from several feet near the northern boundary of the upper impoundment to 15+ feet closer to the upper dam structure. If shallow refusal is encountered above bedrock due to the presence of debris or other materials, a new sampling location and sampling core shall be established in the near vicinity and confirmed by on-site personnel, within a 10-ft. radius of the original location. The historic flood layer 2-4 ft. below the surface bed is considered shallow refusal. Vibracore sampling is not recommended due to potential for false refusal from buried building debris associated with historic flood layers.

At each sample location, cores will be deployed and collected so that each sampled interval is representative of various depths of the sediment column. For example, two to four sample intervals are anticipated at each sample location, depending on total depth: a surficial sediment interval representative of material above the historic "flood layer," one sample interval from the historic flood layer (anticipated to be located two to six feet below the sediment surface), and a bottom sample interval located above core refusal or bedrock representing the bottom depth of the sediment column. Additionally, a fourth sample interval may be collected depending on field conditions at the time of sampling activities, e.g., visual, olfactory, or anomalous PID detections, etc.

Due to the volume requirement for proposed sampling methods, and limited volume collected from sediment cores, repetitive sampling at each sample location might be required to obtain the desired quantity of material from a given depth. Large-diameter cores will be recommended and will be confirmed with drilling operators and documented in this SSQAPP to minimize repeat cores.

3.7 Sampling Media and Parameters

Sampling collection methods will consist of compositing samples from within each sediment core interval, with the exception of volatiles which will be collected directly from a core immediately following retrieval. Sample cores will be field screened for VOCs by photoionization detector (PID) and highest-detected readings will be targeted for sample collection, from within each sample interval. Where the PID does not detect any VOCs, subsamples should be obtained representing all visually different areas of the core or

sediment column. Composite samples will be collected from homogenous layers as best as possible from within each sample interval. VOC samples will be collected in accordance with *CTDEEP Guidance for Collecting and Preserving Soil and Sediment Samples for Laboratory Determination of Volatile Organic Compounds.*

Per CT DEEP, PFAS will be sampled in accordance with New York State Department of Conservation (NYSDEC) *Sampling, Analysis, and Assessment of PFAS* (April 2023).

Table 6 includes a list of proposed samples and their locations.

Sediment will be analyzed for the following parameters:

- Sediment description/classification and physical characteristics including total organic carbon, grain size distribution analysis, organic content, moisture content, percent solids, and pH
- Field screened for VOCs by photoionization detector (PID)
- Laboratory analysis of metals, VOCs, SVOCs, PCBs, petroleum, pesticide, herbicide, and PFAS concentrations

Surface water will be analyzed for the following parameters:

- Depth
- Turbidity, dissolved oxygen, specific conductance, temperature, pH, and oxidation/reduction potential

3.8 Regulatory Standards

Analytical results shall be compared to CT DEEP freshwater and Residential Direct Exposure Criteria (DEC) and the NOAA Sediment Probable and Threshold Effect Concentration (PEC & TEC) Criteria for Freshwater or Marine environments (MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines (SQG) for Freshwater Ecosystems Archives of Environmental Contamination and Toxicology 7 39, pp 20-31). NOAA SQG guidelines have been established in two-tiers: Threshold Effect Concentration or Level (TEC or TEL) and Probable Effect Concentration or Level (PEC or PEL). Additionally, as established by EPA Region 4 in the Ecological Risk Assessment Supplemental Guidance, Ecological Screening Values (ESVs) and Refinement Screening Values (RSVs) for freshwater sediment will be considered. These guidelines are not intended to serve as site-specific clean-up levels but will be used in the decision-making process regarding future plans.

The applicable CT Water Quality Standards, 22a-426-1 *et seq.*, will be used to evaluate the surface water characterization.

Sediment Standards

The NOAA SQG guidelines (MacDonald 2000) presents screening concentrations for inorganic and organic contaminants in various environmental media. To screen for substances which may threaten natural resources of concern to NOAA, laboratory analytical concentrations can be compared to these screening levels. Freshwater TEC (FTEC) and freshwater PEC (FPEC) values will be included for comparison. The ESVs and RSVs provided by EPA Region 4 guidance represent a preliminary screening of site chemical

concentrations to assist in evaluating the need to conduct further investigations at the site; ESVs are not recommended as remediation levels. Exceedance of the ESVs may indicate the need for further evaluation of potential ecological risks on site. CT DEEP Remediation Standard Regulations - Residential Direct Exposure Criteria for soil (CT-RCS) will also be utilized as an additional screening value for planning purposes, however, CT-RCS is not applicable to sediment. If sediment were to be dredged and drained in the future, CT-RCS could become applicable. CT-RCS conditions are detailed in Connecticut Agencies Regs. Section 22a-133k-2. Table 4 below summarizes these categories.

Table 5: Hazara							
Category	Criteria	Applicable to the Subject Property?					
National Emission Standards for Hazardous Air Pollutants (NESHAP)	ACM is a material that contains greater than 1% asbestos.	In accordance with EPA and NESHAP, buildings that will be demolished shall be inspected and sampled for potential ACM. In accordance with CT Department of Public Health and CT rules section 19a-332a-2 and 3, asbestos notification and abatement will be required depending on ACM quantity.					
EPA	LBP is paint that contains lead at concentrations greater than or equal to 0.5% by weight, or 5,000 mg/kg.	If LBP is identified, potential abatement may be required prior to demolition activities unless proposed disposal facilities will accept with comingled waste.					
EPA and Toxic Substances Control Act (TSCA)	A material that contains PCBs at greater than or equal to 50 parts mg/kg by weight.	If manufactured PCB products containing PCBs ≥ 50 mg/kg are found in a building or other structure, they must be removed and disposed of as PCB bulk product waste in accordance with 40 CFR section 761.62.					

Table 3: Hazardous Building Materials Criteria

Table 4: Sediment Categories of Screening Values

Category	Criteria	Applicable to the Subject Property?
NOAA FPEC	Can be used as predictors of sediment toxicity. Probable Effect Concentration is the concentration above which harmful effects are likely to be observed.	Exceedance of SQGs may indicate the need for further site assessment, depending on potential biological impacts, sample location and depth.
NOAA FTEC	Threshold Effect Concentration is the concentration of a hazardous substance in sediment below which adverse effects on sediment-dwelling organisms are unlikely to occur.	Exceedance of SQGs may indicate the need for further site assessment, depending on potential biological impacts, sample location and depth.
EPA Region 4 ESVs and RSVs	The ESVs and RSVs represent a preliminary screening of site chemical concentrations to assist in evaluating the need to conduct further investigations at the site; ESVs are not recommended as remediation levels.	Exceedance of the ESVs may indicate the need for further evaluation of potential ecological risks on site.
CT-RCS	Direct Exposure Criteria are established to protect human health from exposure to contaminants in soil. With some exceptions, these criteria apply to soil	No. Sediment is not subject to residential soil cleanup standards in CT. However, potential future use of sediment at the Subject Property could qualify applicability. Generally, the most stringent

located within fifteen feet of the ground surface. Polluted soil must be remediated to a concentration that is consistent with the Residential Direct	cleanup standard and may be used as a conservative threshold for human health risk.
Exposure Criteria, unless the site is used exclusively for industrial or commercial purposes.	

3.9 Decision Statement

Future planning for the Subject Property includes demolition of dam structures and sediment management, which may include passive release downstream, dredging for off-site disposal, or dredging for downstream in-situ capping. The findings of the Phase II investigation will help inform future sediment management. Based on this investigation, the following decision statements will be applied:

- Sediment is not subject to CT residential direct criteria for soil cleanup standards; however, sediment sampling concentrations will be compared to CT-RCS to help inform future sediment management options. If all sampling data is below the regulatory standards described above, then various dredging options may be considered in future planning.
- Compare sediment contaminant concentrations with NOAA concentrations and EPA Region 4 ESV/RSVs.
 - \circ evaluate the quantity, quality, and analytical characteristics of the data
 - \circ evaluate the vertical and horizontal (depth) distribution of the data
 - o determine biological receptors likely to be exposed
 - identify contaminants with detection concentrations above screening levels and regulatory standards and the magnitude of exceedances.
- NOAA freshwater PEC/TEC and EPA ESV/RSVs will be used as benchmark screening thresholds. Exceedance of these values may indicate the need for further site assessment and/or risk characterization.
 - If sediment concentrations are consistent with or below background levels, sediment contamination is not likely to be present within the impoundments.
 - If all contaminants are below threshold effect concentrations (TECs) and no other site information indicates the presence of adverse effects, low priority for further action may be appropriate (all available chemical, physical and biological information should be reviewed prior to dismissing need for further evaluation of biological effects)
 - If sediment concentrations exceed one of the recommended screening thresholds but not CT-RCS standards, further investigations may be necessary to fully delineate the vertical and horizontal extent of contaminants of concern within the impacted areas.
 - If threshold effects concentrations (TECs) are exceeded but probable effects concentrations (PECs) are not, it is likely that further site assessment in the form of biological community assessments, toxicity testing or both will be required.
 - Considering that NOAA freshwater PEC/TEC and EPA ESV/RSVs are more conservative than CT RCS soil standards, if concentrations exceed all, further investigations/cleanup remedies may be necessary.

• If hazardous building materials are identified within the Subject Property, demolition planning will require potential abatement or hazardous waste characterization.

4.0 Project Timeline

Volpe will complete the Phase II ESA based on the schedule provided in Table 5 below. The schedule is subject to change.

Table 5: Project Timeline

Activity	Duration
	(business days)
Volpe preparation of SSQAPP	15
EPA review of SSQAPP	30
Volpe prepares SOW for laboratory and drilling contract support	5
Volpe contracts laboratory and drilling support	30
Drilling contractor prepares work plan and health and safety plan	15
Volpe and EPA schedule field work	10
Conduct field work (mobilization with crane and drilling barge, perform drilling, sample	5-10
collection). In parallel, perform hazardous building materials inspections.	
Laboratory analysis	10
Data QA review and report preparation	20

5.0 Sampling and Analytical Requirements

5.1 Sample Collection

A summary of all samples to be collected and analyzed during the Phase II ESA is provided in Table 6 below. Sample locations and depths are subject to change based on site conditions.

Location	Easting	Northing	Sample ID	Sample Depth -	Laboratory
				Below Sediment Surface (bss)	Analysis
			Sediment		
KTD-IMP-	907886.6	695494.2	KTD-IMP-SED-101A	0-3 ft. bss	Full list in Table 7
SED-101			KTD-IMP-SED-101B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-101C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-101D	highest PID reading	Full list in Table 7
KTD-IMP-	908118.3	695488.2	KTD-IMP-SED-102A	0-3 ft. bss	Full list in Table 7
SED-102			KTD-IMP-SED-102B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-102C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-102D	highest PID reading	Full list in Table 7
KTD-IMP-	908363.4	695999.1	KTD-IMP-SED-103A	0-3 ft. bss	Full list in Table 7
SED-103			KTD-IMP-SED-103B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-103C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-103D	highest PID reading	Full list in Table 7
KTD-IMP-	908131.8	696005.1	KTD-IMP-SED-104A	0-3 ft. bss	Full list in Table 7
SED-104			KTD-IMP-SED-104B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-104C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-104D	highest PID reading	Full list in Table 7

Table 6: Sample Summary

Location	Easting	Northing	Sample ID	Sample Depth -	Laboratory
				Below Sediment Surface (bss)	Analysis
KTD-IMP-	908376.9	696516.1	KTD-IMP-SED-105A	0-3 ft. bss	Full list in Table 7
SED-105			KTD-IMP-SED-105B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-105C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-105D	highest PID reading	Full list in Table 7
KTD-IMP-	908608.6	696510.0	KTD-IMP-SED-106A	0-3 ft. bss	Full list in Table 7
SED-106			KTD-IMP-SED-106B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-106C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-106D	highest PID reading	Full list in Table 7
KTD-IMP-	908738.5	697051.3	KTD-IMP-SED-107A	0-3 ft. bss	Full list in Table 7
SED-107			KTD-IMP-SED-107B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-107C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-107D	highest PID reading	Full list in Table 7
KTD-IMP-	908506.0	697024.5	KTD-IMP-SED-108A	0-3 ft. bss	Full list in Table 7
SED-108			KTD-IMP-SED-108B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-108C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-108D	highest PID reading	Full list in Table 7
KTD-IMP-	908750.1	697497.1	KTD-IMP-SED-109A	0-3 ft. bss	Full list in Table 7
SED-109			KTD-IMP-SED-109B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-109C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-109D	highest PID reading	Full list in Table 7
KTD-IMP-	908984.2	697584.8	KTD-IMP-SED-110A	0-3 ft. bss	Full list in Table 7
SED-110			KTD-IMP-SED-110B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-110C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-110D	highest PID reading	Full list in Table 7
KTD-IMP-	908996.9	698073.7	KTD-IMP-SED-111A	0-3 ft. bss	Full list in Table 7
SED-111			KTD-IMP-SED-111B	Flood laver. or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-111C	6 in above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-111D	highest PID reading	Full list in Table 7
KTD-IMP-	909229 7	6981115	KTD-IMP-SED-112A	0-3 ft hss	Full list in Table 7
SED-112	505225.7	050111.5	KTD IMP SED 112A	Elood lover or 2.6 ft bss	Full list in Table 7
510 112				filou layer, or 2-o it. bss	Full list in Table 7
			KTD-IIVIP-SED-112C	b in. above bedrock/refusal	Full list in Table 7
	000110.0	600400.0	KTD-IMP-SED-112D	nignest PID reading	Full list in Table 7
KID-IMP-	909143.8	698422.8	KTD-IMP-SED-113A	0-3 ft. bss	Full list in Table 7
SED-113			KTD-IMP-SED-113B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-113C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-113D	highest PID reading	Full list in Table 7
KTD-IMP-	909359.4	698641.9	KTD-IMP-SED-114A	0-3 ft. bss	Full list in Table 7
SED-114			KTD-IMP-SED-114B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SED-114C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-IMP-SED-114D	highest PID reading	Full list in Table 7
KTD-IMP-	909402.2	699021.0	KTD-IMP-SED-115A	0-3 ft. bss	Full list in Table 7
SED-115			KTD-IMP-SED-115B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-IMP-SFD-115C	6 in above bedrock/refusal	Full list in Table 7
			KTD-IMP-SFD-115D	highest PID reading	Full list in Table 7
KTD-IMP-	909638 6	699195 7	KTD-IMP-SED-116A	0-3 ft hss	Full list in Table 7
SED-116	505050.0	000100.7		Flood layer or 2-6 ft has	Full list in Table 7
510 110				6 in show hadrock/rafies	Full list in Table 7
				U III. above bedrock/reiusal	

Location	Easting	Northing	Sample ID	Sample Depth -	Laboratory	
				Below Sediment Surface (bss)	Analysis	
			KTD-IMP-SED-116D	highest PID reading	Full list in Table 7	
KTD-IMP-	909665.1	699586.3	KTD-IMP-SED-117A	0-3 ft. bss	Full list in Table 7	
SED-117			KTD-IMP-SED-117B	Flood layer, or 2-6 ft. bss	Full list in Table 7	
			KTD-IMP-SED-117C	6 in. above bedrock/refusal	Full list in Table 7	
			KTD-IMP-SED-117D	highest PID reading	Full list in Table 7	
KTD-IMP-	909873.7	699745.3	KTD-IMP-SED-118A	0-3 ft. bss	Full list in Table 7	
SED-118			KTD-IMP-SED-118B	Flood layer, or 2-6 ft. bss	Full list in Table 7	
			KTD-IMP-SED-118C	6 in. above bedrock/refusal	Full list in Table 7	
			KTD-IMP-SED-118D	highest PID reading	Full list in Table 7	
KTD-IMP-	910063.8	700246.7	KTD-IMP-SED-119A	0-3 ft. bss	Full list in Table 7	
SED-119			KTD-IMP-SED-119B	Flood laver, or 2-6 ft. bss	Full list in Table 7	
			KTD-IMP-SED-119C	6 in. above bedrock/refusal	Full list in Table 7	
			KTD-IMP-SED-119D	highest PID reading	Full list in Table 7	
KTD-IMP-	910312.4	700758.0	KTD-IMP-SED-120A	0-3 ft hss	Full list in Table 7	
SED-120	510512.4	/00/30.0	KTD-IMP-SED-120R	Elood laver or 2-6 ft hss	Full list in Table 7	
010 110				6 in above bodrock/refusal	Full list in Table 7	
			KTD-IIMP-SED-120C	bighost DD roading	Full list in Table 7	
	007604.4	600564.0	KTD-IIMP-SED-120D		Full list in Table 7	
KID-COE-	907694.1	689564.0	KTD-COE-SED-101A	U-3 IT. DSS	Full list in Table 7	
3ED-101			KTD-COE-SED-101B	Flood layer, or 2-6 ft. bss	Full list in Table 7	
			KTD-COE-SED-101C	b In. above bedrock/refusal	Full list in Table 7	
	007825 1	600152.0	KTD-COE-SED-101D	nignest PID reading	Full list in Table 7	
SED-102	907855.1	090155.9	KTD-COE-SED-102A	U-5 IL DSS	Full list in Table 7	
3LD-102			KTD COE SED 1026	Flood layer, of 2-o It. bss	Full list in Table 7	
			KTD COE SED 102C	bighost PID roading	Full list in Table 7	
KTD-COF-	907655.8	690646 3	KTD-COE-SED-102D	0-3 ft hss	Full list in Table 7	
SED-103	507055.8	050040.5	KTD-COE-SED-103R	Elood laver or 2-6 ft hss	Full list in Table 7	
520 105			KTD-COE-SED-103D	6 in above bedrock/refusal	Full list in Table 7	
			KTD-COF-SED-103D	highest PID reading	Full list in Table 7	
KTD-COE-	907084.2	691190.3	KTD-COE-SED-104A	0-3 ft. bss	Full list in Table 7	
SED-104			KTD-COE-SED-104B	Flood laver, or 2-6 ft. bss	Full list in Table 7	
			KTD-COE-SED-104C	6 in. above bedrock/refusal	Full list in Table 7	
			KTD-COE-SED-104D	highest PID reading	Full list in Table 7	
KTD-COE-	907423.4	691181.5	KTD-COE-SED-105A	0-3 ft. bss	Full list in Table 7	
SED-105			KTD-COE-SED-105B	Flood layer, or 2-6 ft. bss	Full list in Table 7	
			KTD-COE-SED-105C	6 in. above bedrock/refusal	Full list in Table 7	
			KTD-COE-SED-105D	highest PID reading	Full list in Table 7	
KTD-COE-	907823.3	691187.6	KTD-COE-SED-106A	0-3 ft. bss	Full list in Table 7	
SED-106			KTD-COE-SED-106B	Flood layer, or 2-6 ft. bss	Full list in Table 7	
			KTD-COE-SED-106C	6 in. above bedrock/refusal	Full list in Table 7	
			KTD-COE-SED-106D	highest PID reading	Full list in Table 7	
KTD-COE-	907731.9	691664.3	KTD-COE-SED-107A	0-3 ft. bss	Full list in Table 7	
SED-107			KTD-COE-SED-107B	Flood layer, or 2-6 ft. bss	Full list in Table 7	
			KTD-COE-SED-107C	6 in. above bedrock/refusal	Full list in Table 7	
			KTD-COE-SED-107D	highest PID reading	Full list in Table 7	
KTD-COE-	907268.7	691758.6	KTD-COE-SED-108A	0-3 ft. bss	Full list in Table 7	
SED-108			KTD-COE-SED-108B	Flood layer, or 2-6 ft. bss	Full list in Table 7	
			KTD-COE-SED-108C	6 in. above bedrock/refusal	Full list in Table 7	

Location	Easting	Northing	Sample ID	Sample Depth -	Laboratory
				Below Sediment Surface (bss)	Analysis
			KTD-COE-SED-108D	highest PID reading	Full list in Table 7
KTD-COE-	906759.9	691771.8	KTD-COE-SED-109A	0-3 ft. bss	Full list in Table 7
SED-109			KTD-COE-SED-109B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-COE-SED-109C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-COE-SED-109D	highest PID reading	Full list in Table 7
KTD-COE-	906734.8	692285.1	KTD-COE-SED-110A	0-3 ft. bss	Full list in Table 7
SED-110			KTD-COE-SED-110B	Flood layer, or 2-6 ft. bss	Full list in Table 7
			KTD-COE-SED-110C	6 in. above bedrock/refusal	Full list in Table 7
			KTD-COE-SED-110D	highest PID reading	Full list in Table 7

1. Location easting and northing are based on the North American Datum 1983 StatePlane Connecticut FIPS 2001 (US Feet) Projected Coordinate System.

2. The number of interval samples per location may change depending on variable field conditions (depth of sediment within different areas of impoundment).

3. One additional background sample will be collected from each of the upstream and downstream impoundment locations, outside of the Subject Property.

4. Quality control samples in addition to the samples listed in this table will be collected and are listed in Table 10.

Secondary data to be collected in the field includes:

- Sediment descriptions and classifications which will be recorded in the field notebook to document soil characteristics.
- PID readings which will be used on individual soil samples and the soil cores to screen for volatizes in the soil. Readings will be recorded in the Volpe Boring and Well Construction Log.
- Surface water quality measurements including turbidity, dissolved oxygen, specific conductance, temperature, and pH.
- Total depth of sediment.

5.2 Sample Analysis

Sediment samples will be analyzed for the parameters listed below in Table 7. Quality control (QC) samples are not included in this table (please see Table 10). The laboratory SOPs for each analysis are listed in Table 8. Copies of the laboratory SOPs are provided in the *Volpe Brownfields Generic QAPP*.

A complete list of analytes to be included for each parameter is provided in Appendix A. The list includes the laboratory reporting limits as well as the regulatory standards for each analyte as described in Section 3.7 of this SSQAPP. For analytes whose listed laboratory reportable detection limit (RDL) is greater than the strictest applicable regulatory standard, Volpe will coordinate with the lab to determine if lower RDLs are achievable. If they are not, a "J"-qualified estimated concentration that is less than the RDL but greater than the analyte's method detection limit will be evaluated. If reliable chemical concentrations still cannot be achieved, then the need for resampling will be discussed on a case-by-case basis with the EPA Program Officer.

In accordance with EPA Region 1 *Memorandum on Qualifying Soil/Sediment Data with low Percent Solids* (EPA 1990), soil data will be accepted when the percent solids are greater than 30%. A "J"-qualified result will be added when positive results include percent solids 10% or greater and less than or equal to 30%. All positive results are to be rejected when percent solids are less than 10%. All non-detected results are

to be rejected when percent solids are less than or equal to 30%.

Parameter	# of Samples*	Analysis Method	Container	Preservative	Holding Time
			Sediment	-	
CT15 Metals	120	EPA 6010D	1 Plastic container or 1 x 4 oz. glass jar	Cool to 4°C	180 days
Mercury	120	EPA 7471B	1 Plastic container or 1 x 4 oz. glass jar	Cool to 4°C	28 days
Chromium VI (contingency analysis if speciation is required)	120	EPA 3060	1 Plastic container or 1 x 4 oz. glass jar	Cool to 4°C	30 days
RCP VOCs low- level	120	EPA 8260	3 x 40 mL glass Teflon lined vials; 1 x 2oz. jar for percent moisture	1 Vial with 5 mL Methanol; 2 Vials with 5 mL water or sodium bisulfate solution, Cool to 4°C	14 days
RCP SVOCs	120	EPA 8270	1 x 8 oz. amber glass jar	Cool to 4°C	14 days
CT ETPH	120	CT ETPH	1 x 8 oz. glass jar with Teflon-lined lids	Cool to 4°C	14 days
PCBs	120	EPA 8082	1 x 8 oz. amber glass jar	Cool to 4°C	365 days extract, 40 days analyze
Pesticides	120	EPA 8081B	1 x 8 oz. amber glass jar	Cool to 4°C	14 days
Herbicides	120	EPA 8151A	1 x 8 oz. glass jar with	Cool to 4°C	14 days
PFAS	120	EPA 1633	Polypropylene containers	Cool to 4°C	14 days

Table 7: Analytical Summary

* Total number of samples should not exceed. Actual number of interval samples per location may change depending on variable field conditions (depth of sediment within different areas of impoundment).

Table 8: Alpha Analytical Laboratory SOP References

Lab	Title	Reference	Version/Date
SOP		Method	
32639	Volatile Organic Compounds by GC/MS	EPA 8260D	8,11/08/2022
31162	Semivolatile Organic Compounds by GC/MS	EPA 8270E	2,04/29/2021
2116	Organochlorine Pesticides By Capillary Column GC	EPA 8081B	10,11/08/2022
2128	Analysis of Chlorinated Herbicides by GC Using Methylation Derivatization	EPA 8151A	9,01/05/2022
2129	PCBs By Capillary Column GC	EPA 8082A	12,11/08/2022
26796	Inductively Coupled Plasma - Atomic Emission Spectrometry	EPA 6010D	3,07/08/2022
25924	Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique)	EPA 7471B	4,07/07/2022
2204	Chromium, Hexavalent	EPA 3060A	10,01/06/2022
2127	Extractable Total Petroleum Hydrocarbons CT-ETPH	CT EPTH	8,12/6/2022
45852	Method 1633 PFAS in Aqueous, Solid, Biosolids and Tissue by LCMSMS	EPA 1633	3,09/29/2022

6.0 Project Specific SOP References

Volpe SOPs that are to be utilized in the field during the Phase II ESA are listed in Table 9 below. Copies of these SOPs are attached to the *Volpe Brownfields Generic QAPP*. SOP-024 is currently pending review

to be added to the Generic QAPP but will be included in the SOPs appendix.

Volpe SOP	Title	Version/Date
SOP-001	Field Notebook Use	1.0,01/09/23
SOP-002	Site Access and Utility Clearance	1.0,01/09/23
SOP-003	Description and Identification of Soils	1.0,01/09/23
SOP-004	Soil Headspace Screening	1.0,01/09/23
SOP-005	Surficial Soil Sediment and Sludge Sampling	1.0,01/09/23
SOP-008	Split-Spoon/Split-Barrel Sampling	1.0, 01/09/23
SOP-009	Field Preservation of VOA Soil and Sediment Samples	1.0,01/09/23
SOP-010	Direct Push Technique Drilling	1.0,01/09/23
SOP-011	Hallow Stem Auger Drilling	1.0,01/09/23
SOP-013	Monitoring Well and Piezometer Installation	1.0,01/09/23
SOP-015	Low-Flow Groundwater Sampling and Groundwater Level Measuring	1.0,01/09/23
SOP-016	Surface Water Sampling.	1.0,01/09/23
SOP-018	Field Sampling Equipment Decontamination	1.0,01/09/23
SOP-019	Sample Labeling, Packaging, and Shipping	1.0,01/09/23
SOP-020	Management of Investigation Derived Waste	1.0,01/09/23
SOP-024	Hazardous Building Materials Inspections	1.0, 06/09/23

Table 9: Project Specific SOP References

7.0 Field Equipment Calibration & Corrective Action

The PID meter and the water quality meter will need to be calibrated in the field according to the manufacturer specifications. Frequency and procedures for field calibration of these instruments is explained in Volpe SOP-004 Soil Headspace Screening and SOP-015 Low-Flow Groundwater Sampling and Groundwater Level Measuring. Field equipment calibration and corrective action is further discussed in the *Volpe Generic Brownfields QAPP*.

8.0 Laboratory Equipment Calibration & Corrective Action

The laboratory equipment calibration procedures are handled by the individual laboratories. Individual method calibration procedures are included in the *Volpe Generic Brownfields QAPP*.

9.0 Sampling Handling and Custody Requirements

The Volpe Project Implementer will be responsible for sample handling. The procedures for handling samples including labeling, shipping and chain of custody information are included in Volpe SOP-019 Sample Labeling, Packaging, and Shipping. An example chain-of-custody form, sample label, and custody seal are provided in the *Volpe Generic Brownfields QAPP*.

10.0 Field and Analytical Laboratory Quality Control Summary

The list of quality control samples to be collected is provided in Table 10 below.

Sample Type	Frequency	Est.	Acceptance Criteria	Corrective Action
		Num.		
Cooler	One per cooler, per	6	4°C +/- 2°C	Resample, and/or qualify
Temperature	shipment			data.
Blank				
Trip Blank	One per cooler for	6	No detectable	Resample, and/or qualify
	aqueous VOCs		concentrations > RL	data.
Field Duplicate	One per 20 samples	60	RPD ≤ 50% for soil	Review laboratory precision,
	per matrix and		samples >5x RL.	sampling consistency, and
	parameter		RPD ≤ 30% for aqueous	qualify data.
			samples >5x RL.	
Matrix Spike/	One per 20 samples	60	Review laboratory	Reanalyze and/or qualify
Matrix Spike	per matrix and		method limits	data.
Duplicate	parameter		(Generic QAPP App. B).	
Equipment	One per day per	10	No detectable	Resample, and/or qualify
Blank ¹	matrix, equipment	per	concentrations >RL	data.
	used, and parameter	day		

Table 10: Field Quality Control Samples

1. Equipment blanks will only be collected where dedicated/disposable equipment is not available.

Acceptance criteria and corrective actions for field quality control samples – as well as laboratory QC samples – are explained in the *Volpe Generic Brownfields QAPP*.

11.0 Data Management & Project Reports

Field notebooks, Volpe Boring and Well Construction Logs, Volpe Low-Flow Sampling Logs, and copies of the chain-of-custody will be scanned and uploaded to the Volpe Project Network. The Level II data package will be similarly uploaded once it is received.

The sampling investigation activities, findings, recommendations shall be summarized in a Phase II ESA Report, that will include relevant data tables, figures, and analytical reports. The report will be submitted to the EPA Project Officer and shared with the grantee to inform future steps for the Subject Property. Data management and documentation is further discussed in the *Volpe Generic Brownfields QAPP*.

12.0 Assessment and Oversight

Field oversight will be conducted by the Volpe Project Implementer, who will remain in at least daily contact with the Volpe Program Manager. Contact information for project personnel is provided in Section 2 of this SSQAPP. Procedures for assessment, response, and corrective action activities are described in the *Volpe Generic Brownfields QAPP*.

13.0 Data Review

Data validation and usability for both field and laboratory data are described in the *Volpe Generic Brownfields QAPP*. As detailed in Section 5.2, laboratory data will be qualified for sediment results with low percent solids (less than or equal to 30%). No deviations or additions to the generic data review

process are anticipated for this project.

14.0 References

- CTDEEP. (2005). Rationale for Preservation of Soil and Sediment Samples for Determination of Volatile Organic Compounds. Retrieved from https://portal.ct.gov/-/media/DEEP/site_clean_up/guidance/PreservationofSoilandSedimentpdf.pdf.
- CTDEEP. (2006). Guidance for Collecting and Preserving Soil and Sediment Samples for Laboratory Determination of Volatile Organic Compounds. Retrieved from https://portal.ct.gov/DEEP/Remediation--Site-Clean-Up/Guidance/Soil-Preservation-Guidancefor-VOCs.
- CTDEEP. (2015). Connecticdut Water Quality Standards §§ 22a-426-1—22a-426-9. Regulations of Connecticut State Agencies. Title 22a. Department of Energy and Environmental Protection. Retrieved from: https://portal.ct.gov/media/DEEP/water/water_quality_standards/wqsfinaladopted22511pdf.pdf
- MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. (2000). Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems Archives of Environmental Contamination and Toxicology 7 39, pp 20-31. Retrieved from: https://semspub.epa.gov/work/07/40168746.pdf.
- MassDEP. (1995). Interim Policy for Sampling, Analysis, Handling and Tracking Requirements for Dredged Sediment Reused or Disposed at Massachusetts Permitted Landfills. Retrieved from: https://www.mass.gov/guides/interim-policy-comm-94-007-dredged-sediment-reuse-ordisposal.
- NYSDEC. (2023). Sampling, Analysis, and Assessment of PFAS. New York State Department of Conservation (NYSDEC). Retrieved from: https://www.dec.ny.gov/docs/remediation_hudson_pdf/pfassampanaly.pdf.
- USEPA. (1985). *Sediment Sampling Quality Assurance User's Guide*. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/4-85/048.
- USEPA. (2001). Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. Retrieved from: https://www.epa.gov/oceandumping/methods-collection-storage-and-manipulation-sediments-chemical-and-toxicological.
- USEPA. (2018). *Region 4 Ecological Risk Assessment Supplemental Guidance*. Scientific Support Section, Superfund Division, EPA Region 4. Retrieved from: https://www.epa.gov/risk/regionalecological-risk-assessment-era-supplemental-guidance.
- VTDEC. (2015). Vermont Watershed Management Division's Recommended Guidelines for Evaluating Contaminant Concentrations in Freshwater Sediments and the Potential for those Contaminants

to Adversely Affect Aquatic Biota. Vermont Department of Environmental Conservation. Retrieved from: https://dec.vermont.gov/sites/dec/files/wmp/Sites/sediment.evaluation.pdf.

- Volpe. (2023a). Brownfields Generic Quality Assurance Project Plan. Cambridge, MA: U.S. DOT Volpe National Transporation Systems Center.
- Volpe. (2023b). Phase I Environmental Site Assessment, Kinneytown Dam, Seymour, Connecticut. Cambridge, MA: U.S. DOT Volpe National Transporation Systems Center.

Figures

KIID-IMP-SED-120

KID-IMP-SED-119

KID-IMP-SED-1118 KID-IMP-SED-1117

KIJD-IMP-SED-1116

KID-IMP-SED-114

kaid-IMP-SED-112

Kid-IMP-SED-1110 KIID-IMP-SED-109

KTD-IMP-SED-1115

KITD-IMP-SED-11

KID-IMP-SED-111

8

KID-IMP-SED-107 KIID-IMP-SED-108

KID-IMP-SED-106

KIID-IMP-SED-105

Deer Run

KIID-IMP-SED-104 KIJD-IMP-SED-103

KIID-IMP-SED-101 IMP,SED-102 KTD

8

115

KID-COE-SED-110

Samuel Jeskilka H_{hr} KTD-0**2-**SED-109 KID-COE-SED-108

KITD-CODE-SED-107 KIID-COE-SED-104 KIID-COE-SED-103 Reservoir

KID-COE-SED-105 KID-COE-SED-103

KITD-COE-SED-10

1⁄4

0

Botstord

Ra

Site Coordinates: 41.368713, -73.085235 May 2023

KITD-COE-SED-101

Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community, Sources: Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community

Figure 4: Sediment Sampling N Locations Kinneytown Dam Seymour, CT

Northern Impoundment Sample Location

Coe Pond Sample Location

•

0

Appendix A Analyte Lists

Metals

CT 15 Metals - Total or Dissolved by ICP-AES/ICP-MS/CVAA

		Sediment (mg/kg)						
				NC	NOAA		EPA Region 4	
Analyte	CAS No.		CT-RCS	FPEC	FTEC	ESV	RSV	
antimony	7440-36-0	2	27	-	-	2	25	
arsenic	7440-38-2	0.4	10	33	9.8	9.8	33	
barium	7440-39-3	0.4	4,700	-	-	-	-	
beryllium	7440-41-7	0.2	2	-	-	-	-	
cadmium	7440-43-9	0.4	34	4.98	0.99	1	5	
chromium (total) ¹	7440-47-3	0.4	-	111	43.4	43.4	111	
chromium (III)	16065-83-3	NA	3,900	-	-	-	-	
chromium (VI)	18540-29-9	0.8	100	-	-	-	-	
copper	7440-50-08	0.4	2,500	149	31.6	31.6	149	
lead	7439-92-1	2	400	128	35.8	35.8	128	
mercury	7439-97-6	0.08	20	1.06	0.18	0.18	1.1	
nickel	7440-02-0	1	1,400	48.6	22.7	22.7	48.6	
selenium	7782-49-2	0.8	340	-	2	0.72	2.9	
silver	7440-22-4	0.4	340	-	1	1	2.2	
thallium	7440-28-0	0.8	5.4	-	-	-	-	
vanadium	7440-62-2	0.4	470	-	-	-	-	
zinc	7440-66-6	2	20,000	459	121	121	459	

1. If the chromium (total) standard is exceeded, the sample will be analyzed for chromium (VI) and compared to the applicable standards for chromium (III) and chromium (VI).

Analyte: analyte's common name

CAS No.: analyte's Chemical Abstracts Service number

Lab RDL: Laboratory Reportable Detection Limit provided by the lab

CT-RCS: Connecticut Residential Direct Exposure Criteria in Soil provided in CT Regs 22a-133k-3 Appendix A

NOAA FPEC: Freshwater Probable Effect Concentration

NOAA FTEC: Freshwater Threshold Effect Concentration

EPA Region 4 Sediment Screening Value for Hazardous Waste Sites - Freshwater Sediment Screening Values

ESV: Ecological Screening Value

RSV: Refinement Screening Value

VOCs

CT RCP Low Level Method 5035A/8260D by GC/MS Analyte List

		Sediment (mg/kg)							
				N	OAA	EPA Re	egion 4		
Analyte	CAS No.		CT-NC3	FPEC	FTEC	ESV	RSV		
acetone	67-64-1	5	500	-	-	0.065	38.133		
acrylonitrile	107-13-1	.004	1.1	-	-	0.030	0.151		
benzene	71-43-2	0.0005	21	-	-	0.010	2.185		
bromobenzene	108-86-1	0.002	-	-	-	-	-		
bromodichloromethane	75-27-4	0.005	-	-	-	0.210	-		
bromoform	75-25-2	0.002	78	-	-	0.142	-		
bromomethane	74-83-9	0.002	-	-	-	0.0065	-		
sec-butylbenzene	135-98-8	0.0005	-	-	-	-	-		
n-butylbenzene	104-51-8	0.0005	-	-	-	-	-		
tert-butylbenzene	98-06-6	0.0025	-	-	-	-	-		
carbon disulfide	75-15-0	0.005	-	-	-	0.0078	1.580		
carbon tetrachloride	56-23-5	0.0005	4.7	-	-	0.057	0.706		
chlorobenzene	108-90-7	0.0005	500	-	-	0.0030	0.939		
chlorodibromomethane	124-48-1	0.0005	-	-	-	0.198	-		
chloroethane	75-00-3	.001	-	-	-	-	-		
chloroform	67-66-3	0.005	100	-	-	0.087	3.352		
chloromethane	74-87-3	0.0025	-	-	-	-	-		
2-chlorotoluene	95-49-8	0.002	-	-	-	-	-		
4-chlorotoluene	106-43-4	0.002	-	-	-	-	-		
1,2-dibromo-3-chloropropane	96-12-8	0.003	-	-	-	-	-		
1,2-dibromoethane (EDB)	106-93-4	0.001	-	-	-	-	-		
dibromomethane	74-95-3	0.002	-	-	-	-	-		
1,2-dichlorobenzene (o-DCB)	95-50-1	0.002	500	-	-	0.095	0.477		
1,3-dichlorobenzene (m-DCB)	541-73-1	0.002	500	-	-	0.089	0.468		
1,4-dichlorobenzene (p-DCB)	106-46-7	0.002	26	-	-	0.030	0.468		

Kinneytown Dam, Seymour, CT Phase II ESA Site-Specific Quality Assurance Project Plan

		Sediment (mg/kg)						
		Lah RDI	Lab RDL CT-RCS NOAA		EPA Re	gion 4		
Analyte	CAS No.		CIERCS	FPEC	FTEC	ESV	RSV	
Trans-1,4-dichloro-2-butene	11-05-76	-	-	-	-	-	-	
dichlorodifluoromethane (freon 12)	75-71-8	0.010	7.3	-	-	-	-	
1,1-dichloroethane	75-34-3	0.001	500	-	-	0.020	1.666	
1,2-dichloroethane	107-06-02	0.001	6.7	-	-	0.986	1.131	
1,1-dichloroethylene	75-35-4	0.001	1	-	-	0.100	0.753	
cis-1,2-dichloroethylene	156-59-2	0.001	500	-	-	0.432	1.135	
trans-1,2-dichloroethylene	156-60-5	0.0015	500	-	-	0.389	1.135	
1,2-dichloropropane	78-87-5	0.001	9	-	-	0.428	0.876	
1,3-dichloropropane	142-28-9	0.002	3.4	-	-	-	-	
2,2-dichloropropane	594-20-7	0.002	-	-	-	-	-	
1,1-dichloropropene	563-58-6	0.0005	-	-	-	-	-	
cis-1,3-dichloropropene	10061-01-5	0.0005	-	-	-	-	-	
trans-1,3-dichloropropene	10061-02-6	0.001	-	-	-	-	-	
ethylbenzene	100-41-4	0.001	500	-	-	0.290	1.467	
hexachlorobutadiene	87-68-3	0.004	50	-	-	-	-	
2-hexanone (MNBK)	591-78-6	0.010	-	-	-	0.045	7.598	
isopropylbenzene (cumene)	98-82-8	0.001	-	-	-	0.035	0.713	
p-isopropyltoluene	99-87-6	0.001	-	-	-	0.184	0.242	
methyl ethyl ketone (MEK)	78-93-3	0.01	500	-	-	7.604	22.707	
methyl isobutyl ketone (MIBK)	108-10-1	0.01	-	-	-	0.073	8.165	
methyl tertiary butyl ether (MTBE)	1634-04-4	0.002	500	-	-	0.304	4.433	
methylene chloride	75-09-2	0.005	82	-	-	0.018	2.404	
naphthalene	91-20-3	0.004	1000	0.561	0.176	0.176	-	
n-propylbenzene	103-65-1	0.001	-	-	-	-	-	
styrene	100-42-5	0.001	500	-	-	0.126	1.621	
1,1,1,2-tetrachloroethane	630-20-6	0.0005	24	-	-	0.099	0.418	
1,1,2,2-tetrachloroethane	79-34-5	0.0005	3.1	-	-	0.250	2.230	
tetrachloroethylene (PCE)	127-18-4	0.0005	12	-	-	0.002	0.415	
tetrahydrofuran (THF)	109-99-9	0.004	-	-	-	4.488	8.0	

		Sediment (mg/kg)					
		Lah RDI	CT-RCS	N	OAA	gion 4	
Analyte	CAS No.		CTRCS	FPEC	FTEC	ESV	RSV
toluene	108-88-3	0.001	500	-	-	0.010	2.074
1,2,3-trichlorobenzene	87-61-6	0.002	-	-	-	0.113	0.495
1,2,4-trichlorobenzene	120-82-1	0.002	-	-	-	0.011	0.485
1,1,1-trichloroethane	71-55-6	0.0005	500	-	-	0.070	0.367
1,1,2-trichloroethane	79-00-5	0.001	11	-	-	0.538	1.545
trichloroethylene (TCE)	79-01-6	0.0005	56	-	-	0.078	0.692
trichlorofluoromethane (Freon 11)	75-69-4	0.004	-	-	-	-	-
1,2,3-trichloropropane	96-18-4	0.010	-	-	-	-	-
trichlorotrifluoroethane (Freon-113)	76-13-1	0.004	-	-	-	-	-
1,2,4-trimethylbenzene	95-63-6	0.010	-	-	-	0.097	0.361
1,3,5-trimethylbenzene	108-67-8	0.002	-	-	-	0.164	0.354
vinyl chloride	75-01-4	0.001	0.32	-	-	-	-
o-xylene	95-47-6	0.001	500	-	-	-	-
m-xylene	108-38-3	0.002	500	-	-	-	-
p-xylene	106-42-3	0.002	500	-	-	-	-

If a high level analysis is required for methanol preserved soil VOC samples, the laboratory will apply a 50x multiplier to the Soil RDLs listed in this table.

Analyte: analyte's common name

CAS No.: analyte's Chemical Abstracts Service number

Lab RDL: Laboratory Reportable Detection Limit provided by the lab

CT-RCS: Connecticut Residential Direct Exposure Criteria in Soil provided in CT Regs 22a-133k-3 Appendix A

NOAA FPEC: Freshwater Probable Effect Concentration

NOAA FTEC: Freshwater Threshold Effect Concentration

EPA Region 4 Sediment Screening Value for Hazardous Waste Sites - Freshwater Sediment Screening Values

ESV: Ecological Screening Value

RSV: Refinement Screening Value

SVOCs

CT RCP Method 8270 by GC/MS Analyte List

		Sediment (mg/kg)						
				٩	IOAA	EPA Re	gion 4	
Analyte	CAS No.		CTENCS	FPEC	FTEC	ESV	RSV	
acenaphthene	83-32-9	0.1336	-	-	-	0.0067	-	
acenaphthylene	208-96-8	0.1336	1000	-	-	0.0059	-	
aniline	62-53-3	0.2004	-	-	-	0.0023	0.012	
anthracene	120-12-7	0.1002	1000	0.845	0.0572	0.057	-	
benzo(a)anthracene	56-55-3	0.1002	1	-	-	0.108	-	
benzo(a)pyrene	50-32-8	0.1336	1	1.45	0.15	0.150	-	
benzo(b)fluoranthene	205-99-2	0.1002	1	-	-	0.190	-	
benzo(k)fluoranthene	207-08-9	0.1002	8.4	-	-	0.240	-	
benzo(g,h,i)perylene	191-24-2	0.1336	-	-	-	0.170	-	
4-bromophenyl phenyl ether	101-55-3	0.167	-	-	-	0.047	0.062	
butyl benzyl phthalate	85-68-7	0.167	-	-	-	0.100	0.481	
di-n-butyl phthalate	84-74-2	0.167	1000	-	-	0.011	0.319	
Carbazole	86-74-8	0.167	-	-	-	0.069	4.561	
4-chloroaniline	106-47-8	0.167	-	-	-	0.0009	0.021	
bis (2-chloroethoxy)methane	111-91-1	0.18036	-	-	-	-	-	
bis (2-chloroethyl)ether	111-44-4	0.1503	1	-	-	-	8.163	
bis (2-chloroisopropyl)ether	108-60-1	0.2004	8.8	-	-	-	-	
2-chloronaphthalene	91-58-7	0.167	-	-	-	-	-	
2-chlorophenol	95-57-8	0.167	340	-	-	0.055	0.55	
chrysene	218-01-9	0.1002	-	1.29	0.166	0.166	-	
dibenzo(a,h)anthracene	53-70-3	0.1002	-	-	-	0.033	-	
dibenzofuran	132-64-9	0.167				0.510	2.313	
1,2-dichlorobenzene	95-50-1	0.167				-	-	
1,3-dichlorobenzene	541-73-1	0.167				-	-	
di-n-octyl phthalate	117-84-0	0.167	1000			0.039	1.100	
3-3'-dichlorobenzidine	91-94-1	0.167				0.031	0.090	
1,4-dichlorobenzene	106-46-7	0.167				-	-	

Kinneytown Dam, Seymour, CT Phase II ESA Site-Specific Quality Assurance Project Plan

		Sediment (mg/kg)							
				٩	NOAA	EPA Re	egion 4		
Analyte	CAS No.		CT-NC3	FPEC	FTEC	ESV	RSV		
2,4-dichlorophenol	120-83-2	0.1503	-	-	-	0.057	1.886		
diethyl phthalate	84-66-2	0.167	-	-	-	0.630	1.105		
dimethyl phthalate	131-11-3	0.167	-	-	-	0.678	2.031		
2,4-dimethylphenol	105-67-9	0.167	-	-	-	0.039	1.437		
2,4-dinitrophenol	51-28-5	0.8016	-	-	-	0.223	2.961		
2,4-dinitrotoluene	121-14-2	0.167	-	-	-	0.290	2.900		
2,6-dinitrotoluene	606-20-2	0.167	-	-	-	0.296	0.131		
bis (2-ethylhexyl) phthalate	117-81-7	0.167	44	-	-	0.180	2.600		
fluoranthene	206-44-0	0.1002	1000	2.23	0.423	0.423	-		
fluorene	86-73-7	0.167	1000	0.536	0.0774	0.077	-		
hexachlorobenzene	118-74-1	0.1002	1	-	-	0.020	0.240		
hexachlorobutadiene	87-68-3	0.167	-	-	-	-	-		
hexachloroethane	67-72-1	0.1336	44	-	-	0.027	0.075		
indeno (1,2,3-cd) pyrene	193-39-5	0.1336	-	-	-	0.200	-		
isophorone	78-59-1	0.1503	-	-	-	0.876	0.948		
2-methylnapthalene	91-57-6	0.167				0.0202	-		
2-methylphenol	95-48-7	0.167	-	-	-	0.119	1.773		
4-methylphenol	106-44-5	0.024048	-	-	-	0.093	0.260		
naphthalene	91-20-3	0.167	1000	0.561	0.176	0.176	-		
2-nitroaniline	88-74-4	0.167	-	-	-	-	-		
3-nitroaniline	99-09-2	0.167	-	-	-	-	-		
4-nitroaniline	100-01-6	0.167	-	-	-	-	-		
nitrobenzene	98-95-3	0.1503	-	-	-	0.407	9.007		
2-nitrophenol	88-75-5	0.36072	-	-	-	0.168	3.589		
4-nitrophenol	100-02-7	0.2338	-	-	-	0.153	4.105		
n-nitrosodiphenylamine	86-30-6	0.334	-	-	-	0.110	0.370		
n-nitroso-di-n-propylamine	621-64-7	0.167	-	-	-	-	-		
Pentachloronitrobenzene	82-68-8	-	-	-	-	-	-		
pentachlorophenol	87-86-5	0.1336	5.1	-	-	0.010	1.200		

Kinneytown Dam, Seymour, CT Phase II ESA Site-Specific Quality Assurance Project Plan

		Sediment (mg/kg)							
					IOAA	EPA Region 4			
Analyte	CAS No.		CHICS	FPEC	FTEC	ESV	RSV		
phenanthrene	85-01-8	0.1002	1000	1.17	0.204	0.204	-		
phenol	108-95-2	0.167	1000	-	-	-	-		
pyrene	129-00-0	0.1002	1000	1.52	0.195	0.195	-		
1,2,4-trichlorobenzne	120-82-1	0.167	-	-	-	-	-		
2,4,5-trichlorophenol	95-95-4	0.167	-	-	-	0.034	1.964		
2,4,6-trichlorophenol	88-06-2	0.1002	-	-	-	0.089	1.964		

Analyte: analyte's common name

CAS No.: analyte's Chemical Abstracts Service number

Lab RDL: Laboratory Reportable Detection Limit provided by the lab

CT-RCS: Connecticut Residential Direct Exposure Criteria in Soil provided in CT Regs 22a-133k-3 Appendix A

NOAA FPEC: Freshwater Probable Effect Concentration

NOAA FTEC: Freshwater Threshold Effect Concentration

EPA Region 4 Sediment Screening Value for Hazardous Waste Sites - Freshwater Sediment Screening Values

ESV: Ecological Screening Value

RSV: Refinement Screening Value

ETPH

Analysis of Extractable Total Petroleum Hydrocarbons by GC (CT-ETPH Method)

	Sediment (mg/kg)								
		Lah PDI		N	EPA Region 4				
Analyte	CAS No.		CIFICS	FPEC	FTEC				
ETPH									
C9-C36 aliphatic hydrocarbons	NA	13	500	-	-	NA			

Lab RDL: Laboratory Reportable Detection Limit provided by the lab

CT-RCS: Connecticut Residential Direct Exposure Criteria in Soil provided in CT Regs 22a-133k-3 Appendix A

NOAA FPEC: Freshwater Probable Effect Concentration

NOAA FTEC: Freshwater Threshold Effect Concentration

EPA Region 4 Sediment Screening Value for Hazardous Waste Sites - Freshwater Sediment Screening Values

PCBs

EPA Method 8082 by Capillary Column GC

		Sediment (mg/kg)								
		Lah RDI		N	DAA	EPA Region 4				
Analyte	CAS No.		CTRCS	FPEC	FTEC	ESV	RSV			
Aroclor 1016	12674-11-2	0.05	1	0.676	0.0598	-	-			
Aroclor 1221	11104-28-2	0.05	1	0.676	0.0598	-	-			
Aroclor 1232	11141-16-5	0.05	1	0.676	0.0598	-	-			
Aroclor 1242	53469-21-9	0.05	1	0.676	0.0598	-	-			
Aroclor 1248	12672-29-6	0.05	1	0.676	0.0598	-	-			
Aroclor 1254	11097-69-1	0.05	1	0.676	-	-	-			
Aroclor 1260	11096-82-5	0.05	1	0.676	0.0598	-	-			
Aroclor 1262	37324-23-5	0.05	1	0.676	0.0598	-	-			
Aroclor 1268	11100-14-4	0.05	1	0.676	0.0598	-	-			
Total PCBs	1336-36-3	0.05	1	0.676	0.0598	0.0598	0.676			

Analyte: analyte's common name

CAS No.: analyte's Chemical Abstracts Service number

Lab RDL: Laboratory Reportable Detection Limit provided by the lab

CT-RCS: Connecticut Residential Direct Exposure Criteria in Soil provided in CT Regs 22a-133k-3 Appendix A

NOAA FPEC: Freshwater Probable Effect Concentration

NOAA FTEC: Freshwater Threshold Effect Concentration

EPA Region 4 Sediment Screening Value for Hazardous Waste Sites - Freshwater Sediment Screening Values

ESV: Ecological Screening Value

RSV: Refinement Screening Value

Pesticides

Organochlorine Pesticides by GC EPA 8081

		Sediment (mg/kg)							
				NC	DAA	EPA Re	egion 4		
Analyte	CAS No.		CINCS	FPEC	FTEC	ESV	RSV		
aldrin	309-00-2	0.0016	-	-	-	0.029	0.080		
alpha-BHC	319-84-6	0.000667	-	-	-	0.0003	0.006		
beta-BHC	319-85-7	0.000667	-	-	-	0.005	0.0072		
gamma-BHC (Lindane)	58-89-9	0.000667	20	-	-	0.0024	0.005		
delta-BHC	319-86-8	0.0016	-	-	-	-	-		
chlordane	57-74-9	0.01334	0.49	0.0176	0.00324	0.0032	0.018		
4,4'-DDD	72-54-8	0.0016	-	0.028	0.00488	0.0035	0.0085		
4,4'-DDE	72-55-9	0.0016	-	0.0313	0.00316	0.0014	0.0068		
4,4'-DDT	50-29-3	0.003	-	0.0629	0.00416	0.001	0.007		
dieldrin	60-57-1	0.001	0.038	0.0618	0.0019	0.0019	0.062		
endosulfan I	959-98-8	0.0016	-	-	-	-	-		
endosulfan II	33213-65-9	0.0016	-	-	-	0.0009	-		
endosulfan sulfate	1031-07-8	0.000667	-	-	-	0.0007	-		
endrin	72-20-8	0.000667	20	0.207	0.00222	0.0022	0.207		
endrin ketone	53494-70-5	0.0016	-	-	-	-	-		
heptachlor	76-44-8	0.0008004	0.14	-	-	0.0006	0.075		
heptachlor epoxide	1024-57-3	0.003	0.067	0.016	0.00247	0.0025	0.016		
hexachlorobenzene	118-74-1	0.008	-	-	-	0.020	0.240		
methoxychlor	72-43-5	0.003	340	-	-	0.030	0.059		
Toxaphene	8001-35-2	0.03	0.56			0.0001	0.032		

Analyte: analyte's common name

CAS No.: analyte's Chemical Abstracts Service number

Lab RDL: Laboratory Reportable Detection Limit provided by the lab

CT-RCS: Connecticut Residential Direct Exposure Criteria in Soil provided in CT Regs 22a-133k-3 Appendix A

NOAA FPEC: Freshwater Probable Effect Concentration; NOAA FTEC: Freshwater Threshold Effect Concentration

EPA Region 4 Sediment Screening Value for Hazardous Waste Sites - Freshwater Sediment Screening Values

ESV: Ecological Screening Value; RSV: Refinement Screening Value

Herbicides

Herbicides EPA 8151A

		Sediment (mg/kg)							
				NO	AA	EPA Region 4			
Analyte	CAS No.		CTRCS	FPEC	FTEC	ESV	RSV		
2,5-dichloro-6-methoxybenzoic acid	1918-00-9	0.033	-	-	-	-			
(Dicamba)									
2,4-D	94-75-7	0.1665	680						
2,4-dichlorophenoxy butyric acid (2,4-DB)	94-82-6	0.1665	-	-	-	-			
2-(2,4-dichlorophenoxy) propionic acid	120-36-5	0.033	-	-	-	-			
(Dichloroprop)									
2,2-dichloro propionic acid (Dalapon)	75-99-0	0.033	-	-	-	-			
2,4-dinitro-6-sec-butylphenol (Dinoseb)	88-85-7	-	-	-	-	0.000611			
2-methyl-4-chlorophenoxy acetic acid	94-74-6	3.33	-	-	-	-			
(MCPA)									
2-(2-methyl-4-chlorophenoxy) propionic acid	93-65-2	3.33	-	-	-	-			
(MCPP)									
2,4,5-trichlorophenoxy acetic acid (2,4,5-T)	93-76-5	0.1665	-	-	-	12.3			
2,4,5-trichlorophenoxypropionic acid (2,4,5-	93-72-1	0.1665	-	-	-	0.675			
TP)									

Analyte: analyte's common name added in parenthesis

CAS No.: analyte's Chemical Abstracts Service number

Lab RDL: Laboratory Reportable Detection Limit provided by the lab

CT-RCS: Connecticut Residential Direct Exposure Criteria in Soil provided in CT Regs 22a-133k-3 Appendix A

NOAA FPEC: Freshwater Probable Effect Concentration

NOAA FTEC: Freshwater Threshold Effect Concentration

EPA Region 4 Sediment Screening Value for Hazardous Waste Sites - Freshwater Sediment Screening Values

ESV: Ecological Screening Value

RSV: Refinement Screening Value

PFAS

Method 1633 Analysis of Per- and Polyfluoroalkyl Substances (PFAS) by LC-MS/MS

			Sediment (mg/kg)							
					N	OAA	EPA Re	egion 4		
Analyte	Acronym	CAS No.		CINCS	FPEC	FTEC	ESV	RSV		
PERFLUOROALKYL ETHER CARBOXYLIC ACIDS (PFECAs)										
Tetrafluoro-2-	HEPO-DA	13252-13-6	-	-	-	-	-			
(heptafluoropropoxy)propanoic acid										
4,8-dioxa-3H-perfluorononanoic acid	ADONA	919005-14-4	-	-	-	-	-			
Perfluoro-3-methoxypropanoic acid	PFMPA	377-73-1								
Perfluoro-4-methoxybutanoic acid	PFMBA	863090-89-5								
Nonafluoro-3,6-dioxaheptanoic acid	NFDHA	151772-58-6								
PERFLUOROALKYLCARBOXILIC ACIDS (PFCAs)										
Perfluorobutanoic acid	PFBA	375-22-4	0.0008	-	-	-	-			
Perfluoropentanoic acid	PFPeA	2706-30-3	0.0004	-	-	-	-			
Perfluorohexanoic acid	PFHxA	307-24-4	0.0002	-	-	-	-			
Perfluoroheptanoic acid	PFHpA	375-85-9	0.0002	1.35*	-	-	-			
Perfluorooctanoic acid	PFOA	335-67-1	0.0002	1.35*	-	-	-			
Perfluorononanoic acid	PFNA	375-95-1	0.0002	1.35*	-	-	-			
Perfluorodecanoic acid	PFDA	335-76-2	0.0002	-	-	-	-			
Perfluoroundecanoic acid	PFUnA	2058-94-8	0.0002	-	-	-	-			
Perfluorododecanoic acid	PFDoA	307-55-1	0.0002	-	-	-	-			
Perfluorotridecanoic acid	PFTrDA	72629-94-8	0.0002	-	-	-	-			
Perfluoorotetradecanoic acid	PFTeDA	376-06-7	0.0002	-	-	-	-			
PERFLUOROALKYL SULFONIC ACIDS (PFASs)										
Perfluorobutanesulfonic acid	PFBS	375-73-5	0.0002	-	-	-	-			
Perfluoropentanesulfonic acid	PFPeS	2706-91-4	0.0002	-	-	-	-			
Perfluorohexanesulfonic acid	PFHxS	355-46-4	0.0002	1.35*	-	-	-			
Perfluoroheptanesulfonic acid	PFHpS		0.0002							
Perfluorooctanesulfonic acid	PFOS	1763-23-1	0.0002	1.35*	-	-	-			

		Sediment (mg/kg)								
					N	DAA	EPA Re	egion 4		
Analyte	Acronym	CAS No.	Ldu Kul	CIRCS	FPEC	FTEC	ESV	RSV		
Perfluorononanesulfonic acid	PFNS	68259-12-1	0.0002	-	-	-	-			
Perfluorodecanesulfonic acid	PFDS	335-77-3	0.0016	-	-	-	0.0029			
Perfluorododecanesulfonic acid	PFDoS	79780-39-5	0.0016	-	-	-	0.014			
CHLORO-PERFLOROALKYLSULFONATE										
11-chloroeicosafluoro-3-oxaundecane-1- sulfonic acid 1	11Cl- PF3OUdS	763051-92-9	0.0008	-	-	-	-			
9-chlorohexadecafluoro-3-oxanone-1- sulfonic acid 1	9CI-PF3ONS	756426-58-1	0.0008	-	-	-	-			
PERFLUOROOCTANESULFONAMIDES (FOSAs)										
Perfluorooctanesulfonamide	PFOSA	754-91-6	0.0002	-	-	-	-			
N-methylperfluoro-1-octanesulfonamide	NMeFOSA	31506-32-8	0.0002	-	-	-	-			
N-ethylperfluoro-1-octanesulfonamide	NEtFOSA	4151-50-2	0.0002	-	-	-	-			
	FLUOR	OTELOMER CAI	RBOXYLIC AC	IDS						
3-Perfluoropropyl propanoic acid	3:3FTCA	356-02-05	0.001	-	-	-	-			
2H,2H,3H,3H-Perfluorooctanoic acid	5:3FTCA	914637-49-3	0.005	-	-	-	-			
Perfluoroheptyl propanoic acid	7:3FTCA	812-70-4	0.005	-	-	-	-			
	PERFLUOR	OCTANE SULFO	NAMIDE ETH	ANOLS		-				
N-Methyl perfluorooctanesulfonamidoethanol	NMeFOSE	24448-09-7	0.002	-	-	-	-			
N-ethyl perfluorooctanesulfonamidoethanol	NEtFOSE	1691-99-2	0.002	-	-	-	-			
TELOMER SULFONIC ACIDS										
1H,1H,2H,2H-perfluorohexanesulfonic acid (4:2)	4:2FTS	757124-72-4	0.0008	-	-	-	-			
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	6:2FTS	27619-97-2	0.0008	-	-	-	_			
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	8:2FTS	39108-34-4	0.0008	-	-	-	-			

			Sediment (mg/kg)						
					N	OAA	EPA Re	egion 4	
Analyte	Acronym	CAS No.		CIRCS	FPEC	FTEC	ESV	RSV	
PERFLUOROOCTANESULFONAMIDOACETIC ACIDS									
N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	2355-31-9	0.0002	-	-	-	-		
N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	2991-50-6	0.0002	-	-	-	-		
PERLUOROETHER AND POLYETHER CABOXYLIC ACIDS									
Perfluoro-3-methoxypropanoic acid	PFMPA	377-73-1	0.0004						
Perfluoro-4-methoxybutanoic acid	PFMBA	863090-89-5	0.0004						
Perfluoro(2-ethoxyethane)sulfonic acid	PFEESA	113507-82-7	0.0004						
Nonafluoro-3,6-dioxaheptanoic acid	NFDHA	151772-58-6	0.0004						

Analyte: analyte's common name

CAS No.: analyte's Chemical Abstracts Service number

Lab RDL: Laboratory Reportable Detection Limit provided by the lab

CT-RCS: Connecticut Residential Direct Exposure Criteria in Soil provided in CT Regs 22a-133k-3 Appendix A

NOAA FPEC: Freshwater Probable Effect Concentration

NOAA FTEC: Freshwater Threshold Effect Concentration

EPA Region 4 Sediment Screening Value for Hazardous Waste Sites - Freshwater Sediment Screening Values

ESV: Ecological Screening Value

RSV: Refinement Screening Value

Recommended CT RSR Polluting Substance Criteria applies the sum of PFOA, PFOS, PFNA, PFHxS, PFHpA

