SILT FENCE

DETAIL NOTES:

1. THE CONTRACTOR SHALL MAINTAIN OR REPLACE THE SEDIMENTATION CONTROL SYSTEM THROUGHOUT THE CONSTRUCTION DURATION AND UNTIL ALL DISTURBED AREAS HAVE BEEN STABILIZED.

2. THE CONTRACTOR SHALL INSPECT THE SYSTEM ONCE A WEEK AND WITHIN 12 HOURS OF THE END OF A STORM WITH A RAINFALL AMOUNT OF 0.5 INCHES OR GREATER.

3. THE CONTRACTOR SHALL CLEANOUT ACCUMULATED SEDIMENT WHEN ONE HALF OF THE ORIGINAL HEIGHT OF THE SYSTEM IS FILLED WITH SEDIMENT, OR AS ORDERED BY THE ENGINEER.

4. FOLLOWING CONSTRUCTION, THE CONTRACTOR SHALL CLEAN ALL DRAINAGE FACILITIES OF ANY ACCUMULATED SEDIMENT AND TRANSPORT SEDIMENT OFF SITE.

5. ALL COSTS ASSOCIATED WITH INSTALLING, MAINTAINING AND THE REMOVAL OF SILT FENCE SHALL BE INCLUDED IN THE CONTRACT UNIT COST PER LINEAR FOOT FOR "SEDIMENTATION CONTROL SYSTEM."
SINGLE DIRECTION RAMP
WITHOUT NON-WALKING SURFACE
GRADE BREAK GREATER THAN 5'
(TYPE 14)

SINGLE DIRECTION RAMP
WITHOUT NON-WALKING SURFACE
GRADE BREAK LESS THAN 5'
(TYPE 15)

SINGLE DIRECTION - RETURN CURB
WITH NON-WALKING SURFACE
(TYPE 18)

SINGLE DIRECTION - NO CURB
WITH NON-WALKING SURFACE
(TYPE 19)
SUGGESTED SEQUENCE OF CONSTRUCTION

1. CONTACT "CAYE BEFORE YOU DIG.
2. INITIAL CONSTRUCTION AND ENSURE CONTROL MEASURES, AS REQUIRED.
3. INSTALL TEMPORARY CONDUIT AND DE-WATER THE SITE AS NEEDED.
4. EXCAVATE FOR AND CONSTRUCT PROPOSED FOOTINGS.
5. INSTALL CONDUIT AND INSTALL AND CONNECT INFRASTRUCTURE.
6. REMOVE TEMPORARY CONDUIT AND DEMOLISH DECKS.
7. INSTALL PRE-FABRICATED STEEL SUPERSTRUCTURE.
8. PERFORM APPROACH WORK AND RESTORE DETEKTED AREAS.

TEMPORARY HYDRAULIC DATA

<table>
<thead>
<tr>
<th></th>
<th>NAUGATUCK RIVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE DRY FLOW</td>
<td>40 cfs</td>
</tr>
<tr>
<td>AVERAGE SUMP FLOW</td>
<td>40 cfs</td>
</tr>
<tr>
<td>2-YEAR FLOOD FREQUENCY</td>
<td>400 cfs</td>
</tr>
<tr>
<td>TEMPORARY DESIGN FLOOD</td>
<td>550 cfs</td>
</tr>
<tr>
<td>TEMPORARY DESIGN FLOOD FREQUENCY</td>
<td>2-YEAR</td>
</tr>
<tr>
<td>TEMPORARY MAX UPLIFT</td>
<td>325.02 ft</td>
</tr>
</tbody>
</table>
NOTES

1. FOR WORKING POINT COORDINATES SEE SHEET NO. S-2.
2. FOR BORING LOGS SEE SHEET NO. S-3.
3. PEDESTAL DETAIL SHADES ARE SHOWN ON APPENDIX 4 MAPE DESIGN, PEDESTAL ELEVATIONS SHALL BE DETERMINED BY CONTRACTOR AS PART OF THE SUPERSTRUCTURE AND MECHANICAL DESIGN.
4. SEE SHEET NO. S-4 FOR PEDESTAL DEETS.
5. EXCAVATION INTO THE BEDROCK FOR CONSTRUCTION THE FOOTING IS TO BE PAID FOR UNDER "STRUCTURE EXCAVATION - ROCK".
6. THE ANCHOR HOLE ARE SHOWN FOR ESTIMATING PURPOSES ONLY THE EXACT PLACEMENT IS TO BE COORDINATED WITH THE FABRICATOR AND IS INCLUDED IN THE COST OF PEDESTAL INSTALABILITIES.

ABUTMENT 1 PLAN
SCALE 1" = 1'-0"

PLAN PEDESTAL DETAIL
SCALE 1" = 1'-0"

ABUTMENT 1 ELEVATION
SCALE 1" = 1'-0"

ABUTMENT 1 SUBSTRUCTURE DETAILS - 1

TYPICAL ABUTMENT DETAILS

TYPICAL ABUTMENT PAYLIMITS
SCALE 1" = 1'-0"

TYPICAL ABUTMENT SECTION
SCALE 1" = 1'-0"
PEDESTRIAN BRIDGE OVER BRANCH BROOK

S-7

SUPERSTRUCTURE DETAILS

1. Precast members shall be fabricated from high strength, pre-stressed, prestress reinforced concrete precast members. Prestress reinforcement shall consist of 4 0.876 in. (22.2 mm) dia. AASHTO M354 Class 170 NS3-45 strand (97 kips/strand) and shall be post-tensioned in the form of Y-configuration with a dead load of 40 kips (177 kN) per member. ללשון העברית המ🇱

2. The design shall consist of a five-grade blocking system.

3. The precast concrete elements shall be fabricated with a concrete cover of 2 in. (50 mm) on all sides. The concrete cover shall be protected by a corrosion-resistant material. The precast concrete elements shall be connected to the adjacent precast members using steel anchors. The anchors shall be designed to withstand the dead load and the live load.

4. The precast concrete elements shall be supported by steel plates at the support points. The steel plates shall be designed to withstand the dead load and the live load.

5. The precast concrete elements shall be trimmed to allow for the installation of the expansion joint system. The expansion joint system shall be designed to accommodate the movement of the bridge.

6. The precast concrete elements shall be placed on a bed of grout or a similar material. The grout or similar material shall be designed to support the weight of the precast concrete elements and to provide a stable base.

7. The precast concrete elements shall be connected to the steel frame using bolted connections. The bolted connections shall be designed to transfer the loads from the precast concrete elements to the steel frame.